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Sarah H. Mack
1962–2020

WE DEDICATE THIS SIXTH 
EDITION OF Principles of Neural 
Science to our dear friends and 
colleagues, Thomas M. Jessell 
and Sarah H. Mack. 

Sarah Mack, who contrib-
uted to and directed the art pro-
gram of Principles of Neural Science 
during her more than 30-year 
tenure, passed away on Octo-
ber 2, 2020. She worked coura-
geously and tirelessly to ensure 
that all the artwork for this edi-
tion met her high standards and 
could be completed while she 
still had the strength to continue. 

After graduating from  
Williams College with honors in 
English literature in 1984, Sarah 
worked for five years in the field 
of social work, while taking 

courses at Columbia in studio art and computer graphics. She first con-
tributed to the art program for the third edition of the book when she 
joined the Kandel lab as a graphic artist in 1989. Five years later, as the 
fourth edition went into the planning stage, Sarah, together with Jane 
Dodd as art editor, completely redesigned the art program, developing 
and converting hundreds of figures and introducing color. This monu-
mental task required countless aesthetic decisions to develop a stylistic 
consistency for the various figure elements throughout the book. The 
result was a set of remarkably clear, didactic, and artistically pleasing 
diagrams and images. Sarah maintained and extended this high level 
of excellence as art editor of the fifth and sixth editions of the book. She 
has thus left an enduring mark on the thousands of students who over 
the years, as well as in years to come, have been introduced to neuro-
science through her work. 

Sarah was a most remarkable and gifted artist, who developed 
a deep understanding and appreciation of neuroscience during the 
many years she contributed to the book. In addition to her artistic con-
tributions to the figures, she also edited the associated text and legends 
for maximum clarity. Because her contributions extended far beyond 
the preparation of the figures, Sarah was made co-editor of the cur-
rent edition of the book. Sarah also had an amazing ability to juggle 
huge numbers of negotiations with dozens of authors simultaneously, 
all the while gently, but firmly, steering them to a final set of elegantly 
instructive images. She did this with such a spirit of generosity that 
her interactions with the authors, even those she never met in person, 
developed into warm friendships. 

Over the past three editions, Sarah was the driving force that 
formed the basis for the aesthetic unifying vision running throughout 
the chapters of Principles. She will be greatly missed by us all.
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Tom Jessell was an extraor-
dinary neuroscientist who made 
a series of pioneering contribu-
tions to our understanding of 
spinal cord development, the 
sensory-motor circuit, and the 
control of movement. Tom had 
a deep encyclopedic knowledge 
and understanding of all that 
came within his sphere of inter-
est. Equally at home discussing 
a long-forgotten scientific dis-
covery, quoting Shakespeare 
by heart, or enthusing about 
20th-century British or Italian 
Renaissance art, Tom was a bril-
liant polymath.

Tom’s interest in neuro-
science began with his under-
graduate studies of synaptic 
pharmacology at the University 

Thomas M. Jessell
1951–2019

of London, from which he graduated in 1973. He then joined Leslie 
Iversen’s laboratory at the Medical Research Council in Cambridge to 
pursue his PhD, where he investigated the mechanism by which the 
newly discovered neuropeptide substance P controls pain sensation. 
Tom made the pivotal observation that opioids inhibit transmission of 
pain sensation in the spinal cord by reducing substance P release. After 
receiving his doctoral degree in 1977, he continued to explore the role 
of substance P in pain processing as a postdoctoral fellow with Masa-
nori Otsuka in Tokyo, solidifying his lifelong interest in spinal sensory 
mechanisms while managing to learn rudimentary Japanese. Tom then 
realized that deeper insights into spinal cord function might best be 
obtained through an understanding of neural development, prompt-
ing him to pursue research on the formation of a classic synapse, the 
neuromuscular junction, in Gerry Fischbach’s laboratory at Harvard.

Tom then joined the faculty of Harvard’s Department of Neu-
robiology as an Assistant Professor in 1981, where he explored the 
mechanisms of sensory synaptic transmission and the development of 
the somatosensory input to the spinal cord. In 1985 Tom was recruited 
to the position of Associate Professor and investigator of the Howard 
Hughes Medical Institute in the Center for Neurobiology and Behav-
ior (now the Department of Neuroscience) and Department of Bio-
chemistry and Molecular Biophysics at Columbia University’s College 
of Physicians and Surgeons. Over the next 33 years, Tom, together 
with a remarkable group of students and collaborators, applied a mul-
tidisciplinary cellular, biochemical, genetic, and electrophysiological 
approach to identify and define spinal cord microcircuits that control 
sensory and motor behavior. His studies revealed the molecular and 
cellular mechanisms by which spinal neurons acquire their identity 
and by which spinal circuits are assembled and operate. He defined 
key concepts and principles of neural development and motor control, 
and his discoveries generated unprecedented insight into the neural 
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principles that coordinate movement, paving the way for therapies for 
motor neuron disease.

Eric Kandel and Jimmy Schwartz, the initial editors of Principles 
of Neural Science, recruited Tom as co-editor as they began to plan the 
third edition of the book. Tom’s role was to expand the treatment of 
developmental and molecular neural science. This proved to be a pres-
cient choice as Tom’s breadth of knowledge, clarity of thought, and 
precise, elegant style of writing helped shape and define the text for 
the next three editions. As co-authors of chapters in Principles during 
Tom’s tenure, we can attest to the rigor of language and prose that he 
encouraged his authors to adopt. 

In the last years of his life, Tom bravely faced a devasting neuro-
degenerative disease that prevented him from actively participating in 
the editing of the current edition. Nonetheless Tom’s vision remains in 
the overall design of Principles and its philosophical approach to pro-
viding a molecular understanding of the neural bases of behavior and 
neurological disease. Tom’s towering influence on this and future edi-
tions of Principles, and on the field of neuroscience in general, will no 
doubt endure for decades to come. 

Kandel_FM.indd   9 20/01/21   9:04 AM



Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our 
knowledge, changes in treatment and drug therapy are required. The authors and the publisher of 
this work have checked with sources believed to be reliable in their efforts to provide information 
that is complete and generally in accord with the standards accepted at the time of publication. 
However, in view of the possibility of human error or changes in medical sciences, neither 
the authors nor the publisher nor any other party who has been involved in the preparation 
or publication of this work warrants that the information contained herein is in every respect 
accurate or complete, and they disclaim all responsibility for any errors or omissions or for the 
results obtained from use of the information contained in this work. Readers are encouraged 
to confirm the information contained herein with other sources. For example and in particular, 
readers are advised to check the product information sheet included in the package of each drug 
they plan to administer to be certain that the information contained in this work is accurate 
and that changes have not been made in the recommended dose or in the contraindications for 
administration. This recommendation is of particular importance in connection with new or 
infrequently used drugs.
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